Mecânica Quântica I - 2010.2 - IF-UFF - Lista de exercícios n. 4

Ernesto Galvão (Dated: October 5, 2010)

I. PROBLEMAS DA LISTA:

Ex. 1 (Variados.)

- a) Ache o operador conjugado Hermitiano do operador $\frac{d}{dx}$.
- b) Calcule o comutador $[p^2, x]$. O que isso nos diz sobre os desvios-padrão σ_{p^2} e σ_x ?
- c) Em sala de aula encontramos uma expressão para a derivada temporal do valor esperado de qualquer observável:

$$\frac{d}{dt} \left\langle \hat{Q} \right\rangle = \frac{i}{\hbar} \left\langle [\hat{H}, \hat{Q}] \right\rangle + \left\langle \frac{\partial \hat{Q}}{\partial t} \right\rangle, \tag{1}$$

onde a Hamiltoniana $\hat{H} = \hat{p}^2/2m + V(x)$. Interprete o resultado que encontramos quando substituimos $\hat{Q} = \hat{H}$.

Ex. 2 (Princípio da incerteza.)

Considerando uma partícula que se move na reta x, vamos obter um princípio de incerteza para os observáveis \hat{p} e $sen(\lambda \hat{x})$, com $\lambda > 0$.

- a) Explique como definimos o operador $sen(\lambda \hat{A})$ a partir da ação conhecida do operador \hat{A} .
- b) Calcule o comutador $[\hat{p}, sen(\lambda \hat{x})]$.
- c) Use o resultado acima para obter uma desigualdade envolvendo o produto $\sigma_{\hat{p}}\sigma_{sen(\lambda\hat{x})}$, onde $\sigma_{\hat{A}}$ representa o desvio-padrão dos resultados de medida do observável \hat{A} .
- d) Mostre como recuperar o princípio da incerteza de Heisenberg para \hat{x} e \hat{p} a partir do resultado do item c) acima.

Ex. 3 (Medidas sequenciais.) Griffiths problema 3.27, com as seguintes substituições:

$$\psi_1 = \sqrt{\frac{4}{5}}\phi_1 + \sqrt{\frac{1}{5}}\phi_2 \tag{2}$$

$$\psi_2 = \sqrt{\frac{1}{5}}\phi_1 - \sqrt{\frac{4}{5}}\phi_2 \tag{3}$$

(Outros problemas do Griffiths.)

Problemas 3.14, 3.38.

II. PROBLEMAS RECOMENDADOS:

Griffiths 3.3, 3.4, 3.6, 3.7 b), 3.13, 3.15, 3,17, 3.24, 3.31, 3.36, 3.39.